SamplingClient
Interface for generating text from trained models
Key Methods
Sample
sample(
prompt,
num_samples,
sampling_params,
include_prompt_logprobs=False,
topk_prompt_logprobs=None
)
sample_async(...)Generate text completions from a prompt.
Parameters:
prompt- ModelInput containing tokensnum_samples- Number of completions to generatesampling_params- SamplingParams controlling generationinclude_prompt_logprobs- Return log probabilities for prompt tokenstopk_prompt_logprobs- Return top-k token alternatives per position
Returns: Future containing generated tokens and optional logprobs.
Compute Logprobs
compute_logprobs(prompt)
compute_logprobs_async(prompt)Calculate log probabilities for tokens in the prompt without generating new text.
Usage Example
import mint
from mint import types
service_client = mint.ServiceClient()
sampling_client = service_client.create_sampling_client(
base_model="Qwen/Qwen3-4B-Instruct-2507"
)
# Prepare prompt
tokenizer = ... # Get tokenizer
prompt = types.ModelInput.from_ints(
tokenizer.encode("The weather today is")
)
# Configure sampling
params = types.SamplingParams(
max_tokens=20,
temperature=0.7
)
# Generate
future = sampling_client.sample(
prompt=prompt,
sampling_params=params,
num_samples=1
)
result = future.result()Async Usage
future = await sampling_client.sample_async(prompt, params, num_samples=1)
result = await future